# International

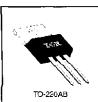
## IRFBC40LC

 $V_{DSS} = 600V$ 

 $R_{DS(an)} = 1.2\Omega$ 

I<sub>D</sub> = 6.2A

#### HEXFET® Power MOSFET


- Ultra Low Gate Charge
- Reduced Gate Drive Requirement.
- Enhanced 30V Vos Rating
- Reduced Crss, Coss, Crss
- Extremely High Frequency Operation
- Repetitive Avalanche Rated



#### Description

This new series of Low Charge HEXFETs achieve significantly lower gate charge over conventional MOSFETs. Utilizing line new LCDMOS technology, the device improvements are achieved without added product cost, allowing for reduced gate drive requirements and total system savings. In addition reduced switching losses and improved efficiency are achievable in a vanety of high frequency applications. Frequencies of a few MHz at high current are possible using the new Low Charge MOSFETs.





#### Absolute Maximum Ratings

|                 | Parameter                             | Nax.                  | Units    |
|-----------------|---------------------------------------|-----------------------|----------|
| le @ Tc = 25°C  | Continuous Drain Current, Vas @ 10 V  | 6.2                   |          |
| ID @ Tc = 100°C | Continuous Drain Current, VGs @ 10 V  | 3.9                   | A        |
| Iow             | Pulsed Drain Current ①                | 25                    |          |
| Pp @ Tc = 25°C  | Power Dissipation                     | 125                   | W        |
|                 | Linear Derating Factor                | f.0                   | W/C      |
| VGs             | Gate-to-Source Voltage                | ±30                   | - V      |
| EAS             | Single Pulse Ava anche Energy @       | 530                   | mJ       |
| lan .           | Avalariche Current @                  | 6.2                   | A        |
| EAR             | Repetitive Avalanche Energy ①         | 13 <u> </u>           | mJ       |
| dy/d1           | Peak Diode Recovery dv/dt 3           | 3.0                   | V/ns     |
| T,              | Operating Junction and                | -55 to -150           | 1        |
| TSTG            | Storage Temperature Range             |                       | °C       |
|                 | Soldering Temperature, for 10 seconds | 300 (1.6mm from case) | <u> </u> |
|                 | Mounting Torque, 6-32 or M3 screw     | 10 (bf•in (1.1 N•m)   |          |

#### Thermal Resistance

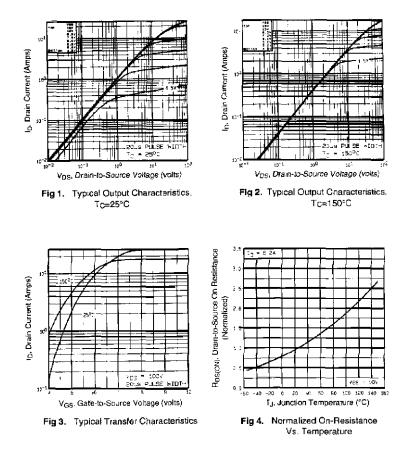
| [    | Parameter                           | Min | Тур. | Max. | Units  |
|------|-------------------------------------|-----|------|------|--------|
| Raic | Junction-to-Case                    | -   |      | 1.0  |        |
| Recs | Case-to-Sink, Flat, Greased Surface |     | 0.50 | L    | _ °C/W |
| Reja | Junction-to-Ambient                 |     |      | 62   |        |

Document Number: 90147

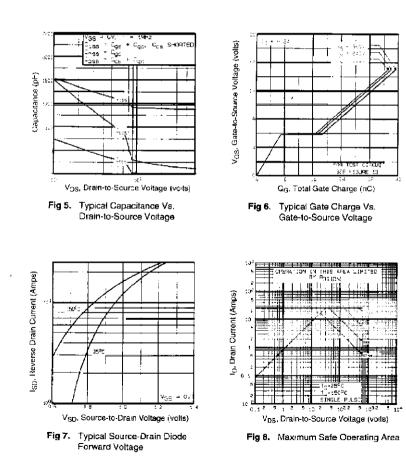
### IOR

#### Electrical Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

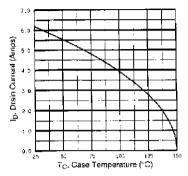
|                 | Parameter                            | Vin.        | Тур. | Max. | Units | Test Conditions                                           |
|-----------------|--------------------------------------|-------------|------|------|-------|-----------------------------------------------------------|
| V(BR)DSS        | Drain-to-Source Breakdown Voltage    | 600         |      | _    | ۷     | Vəs=0V. Ip= 250µА                                         |
|                 | Breakdown Voltage Temp. Coefficient  | · _         | 0.70 | _    | V/⁰C  | Reference to 25°C. Ig= 1mA                                |
| Bosion;         | Static Drain-to-Source On-Resistance | . —         | i    | 1.2  | ĪΩ    | V <sub>3S</sub> =10V, I <sub>D</sub> =3.7A ⊛              |
| Vesith)         | Gate Threshold Voltage               | 2.0         | -    | 4.0  | V     | V <sub>DS</sub> =V <sub>OS</sub> , I <sub>D</sub> = 250μA |
| 96              | Forward Transconductance             | 3.7         | _    | -    | S     | Vos=100V, lp=3.7A ④                                       |
| loss            | Drain-to-Source Leakage Current      | _           |      | 100  | μA    | Vps=600V, Vgs=0V                                          |
|                 |                                      | _           | _    | 500  |       | Vps=480V, Vgs=0V, Tj=125°C                                |
|                 | Gate-to-Source Forward Leakage       | —           | _    | 100  | - пА  | V <sub>96</sub> =20V                                      |
| 355             | Gate-to-Source Reverse Leaxage       |             | _    | -100 | - 104 | V <sub>36</sub> =-20V                                     |
| Q,              | Total Gate Charge                    | -           | :    | 39   | 1     | ID=6.2A                                                   |
| Qas             | Gate to Source Charge                | —           |      | 10   | nC    | V <sub>DS</sub> =360V                                     |
| Q <sub>gc</sub> | Gate-to-Drain : "Miller") Charge     | 1           | . —  | •9   |       | V35=10V See Fig. 6 and 13 3                               |
| Lation)         | Tum-On Delay Time                    |             | 12   |      | 1     | VDD=30CV                                                  |
| t               | Rise Time                            | . —         | 20   |      | ns    | I⊵=6 2A                                                   |
| Lo.04)          | Tum-Off Delay Time                   | -           | 27   |      | 1     | Bg=9.1Ω                                                   |
| ti i            | Fall Time                            |             | 17   | i —  | ·     | R <sub>D</sub> =47Ω See Figure 10 €                       |
| Lo              | :<br>Internal Drain Inductance       |             | 4.5  |      | - nH  | Between lead,<br>6 mm (0.25in.)                           |
| Ls              | Internal Source inductance           | -           | 7.5  | · _  |       | and center of                                             |
| Cas             | Input Capacitance                    | <del></del> | 1100 | . –  | -     | V <sub>GS</sub> =0V                                       |
| Coss            | Output Capacitance                   |             | 140  |      | of    | Vos= 25V                                                  |
| Crea            | Reverse Transfer Capacitance         |             | 15   |      |       | ' :=1 0MHz See Figure 5                                   |


#### Source-Drain Ratings and Characteristics

¥.


|                | Parameter                                     | Min.    | Тур.      | Max.               | Unita    | Test Conditions                     |
|----------------|-----------------------------------------------|---------|-----------|--------------------|----------|-------------------------------------|
| s.             | : Continuous Source Current<br>: (Body Diode) | ·       | _         | 6.2                |          | showing the                         |
| lsm            | Puised Source Current<br>(Body Diode) ©       | -       | _         | 25                 | , ,,     | p-n junction diode.                 |
| Vsp            | Diode Forward Voltage                         | —       | _         | 1.5                | ٧        | T =25°C, Is=6.2A, Vas=0V @          |
| 1-             | Reverse Recovery Time                         | -       | 440       | 660                | ns.      | TJ=25°C, I⊧=6.2A                    |
| Q <sub>r</sub> | Reverse Recovery Charge                       |         | 2.1       | 3.2                | μC       | di/db=100A/µs @                     |
| ton            | Forward Turn-On Time                          | ntrinai | e turn-or | s tir <u>me</u> is | neglegit | ile (turn-on is dominated by Ls+Lo) |

#### Notes:


- D Repetitive rating; pulse width limited by max, junction temperature (See Figure 11).
- 2 Vod=50V, starting T\_=25°C, L=25mH  $P_G$ =250,  $!_{AS}$ =6.2A (See Figure 12)
- ③ ISD≤6.2A, dVdt≤80A/µs, VDD≤V(BRIDSS, Ty≤150°C
- ④ Pulse width  $\leq 300\,\mu s;$  duty cycle  $\leq\!\!2\%$



Document Number: 90147



IQR





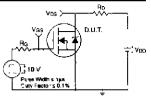



Fig 10a. Switching Time Test Circuit

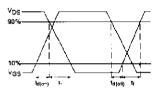



Fig 10b. Switching Time Waveforms

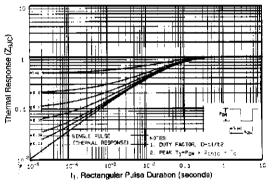



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Document Number: 90147

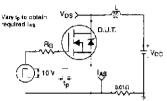



Fig 12a. Unclamped Inductive Test Circuit

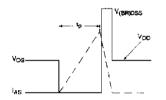
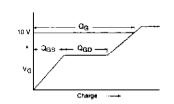
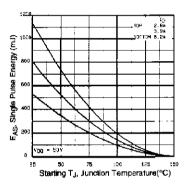





Fig 12b. Unclamped Inductive Waveforms



2

Fig 13a. Basic Gate Charge Waveform



IC2F

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

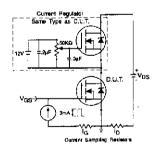
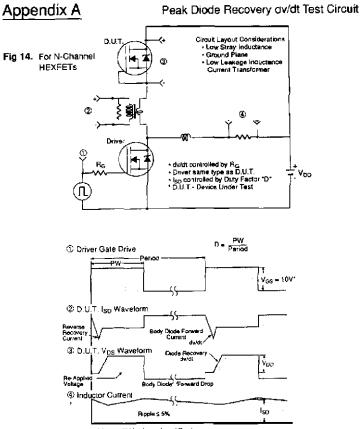
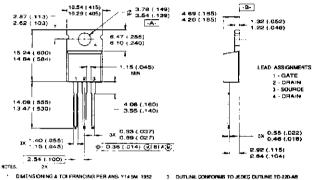




Fig 13b. Gate Charge Test Circuit

Appendix A: Figure 14, Peak Diode Recovery dv/dl Test Circuit Appendix B: Package Outline Mechanical Drawing Appendix C: Part Marking Information




\* V<sub>GS</sub> = 5V for Logic Level Devices

Document Number: 90147

#### Package Outline

#### **TO-220AB Outline**

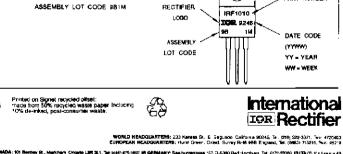
Dimensions are shown in millimeters (inches)



.

DIMENSIONING & TOLERANCING PER ANS/ 914 5M 1
CONTROLLING DIMENSION LINCH

EXAMPLE: THIS IS AN IRF1010 WITH


DUTLINE CONFORMS TO JEDEC CUTLINE TO 220-48 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

#### Part Marking Information

TO-220AB

.





N CANADA: 101 Bentley R., Machain Owarle LR 31. Tac (148) 475-1802 IN CARAMIN Sub-burgerasas (5), 3-6380 Bad Horburg, 16), 672-67060 (R (3), 17 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 19 ( ), 1

Sales Offices, Agents and Distributors in Major Close Throughout the World.

Cale and advantanteen dataset in stronge wildow wildow — "XXX

# IOR

Appendix B

Primed in U.S.A. 294 5m

Document Number: 90147



Vishay

# Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier<sup>®</sup>, IR<sup>®</sup>, the IR logo, HEXFET<sup>®</sup>, HEXSense<sup>®</sup>, HEXDIP<sup>®</sup>, DOL<sup>®</sup>, INTERO<sup>®</sup>, and POWIRTRAIN<sup>®</sup> are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.